Cellulosenitrat – neue Wege zur Zustandsbeurteilung?

Erkenntnisse aus einer Masterarbeit 2022

Marcia Montani, M.A. Konservierung-Restaurierung

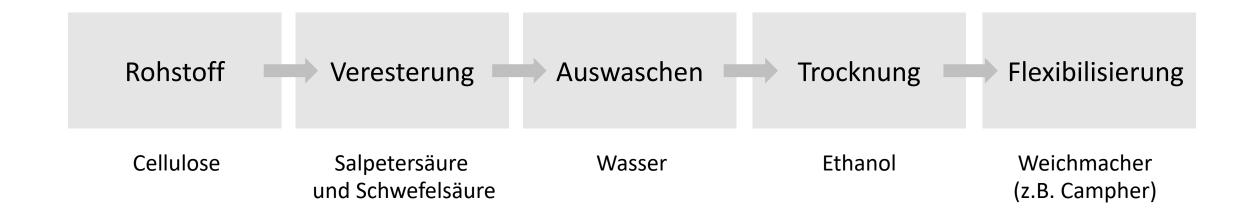
Betreuung durch:

Barbara Spalinger Zumbühl, M.A. Konservierung-Restaurierung Caroline Forster, Dr. phil. nat. Chemikerin Mario Meier, FUB - Forschungsstelle für Umweltbeobachtung AG

INHALT

- Einleitung
- Methodik
- Durchgeführte Untersuchungen
- Ergebnisse
- Ausblick

KONTEXTUALISIERUNG

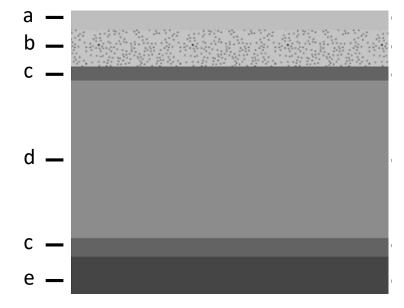

- Weltweite, breite Verwendung
- Grosse Anzahl
- Obsolete, erhaltenswerte Fotografien:
 - Bildinhalt
 - Trägermaterial technisches Kulturgut

Archivregale mit Fotoschachteln, gefüllt mit Negativmaterialien; (Roldão, 2018, S. 158); Foto: José Paulo Ruas

HERSTELLUNG

SCHICHTAUFBAU NEGATIV

a: Überzug (Gelatine)


b: panchromatische Emulsion (Gelatine + Silberhalogenide)

c: Haftschicht (Gelatine + Cellulosenitrat)

d: Trägerschicht (Cellulosenitrat)

e: Anti-Curl (Gelatine)

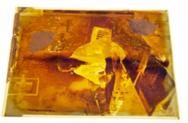
Schematische Darstellung der Schichtdicken von Celluloseester-Filmen, deutsche Übersetzung der Legende; (Roldão, 2018, S. 57)

DEGRADATION

- 1. Abspaltung von NO₂ (homolytische Spaltung CO–NO₂):
 - Stickoxide (NO_x)
- 2. Bildung von Säuren (Reaktion von NO_x mit Sauerstoff und / oder Wasser)
 - → Salpetrige Säure (HNO₂)
 - → Salpetersäure (HNO₃)

DEGRADATION

Level 1No deterioration.


Level 2
The negatives begin to yellow and mirror.

Level 3
The film becomes sticky and emits a strong noxious odor (nitric acid).

Level 4
The film becomes an amber color and the image begins to fade.

Level 5
The film is soft and can weld to adjacent negatives, enclosures and photographs.

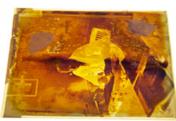
Level 6The film degenerates into a brownish acid powder.

Optische Degradationsmuster und deren Einteilung nach Zustandslevel; (Fischer, 2012, S. 2)

DEGRADATION

Stickoxide

Level 1No deterioration.


Level 2
The negatives begin to yellow and mirror.

Level 3
The film becomes sticky and emits a strong noxious odor (nitric acid).

Level 4
The film becomes an amber color and the image begins to fade.

Säuren

Level 5
The film is soft and can weld to adjacent negatives, enclosures and photographs.

Level 6
The film degenerates into a brownish acid powder.

Optische Degradationsmuster und deren Einteilung nach Zustandslevel; (Fischer, 2012, S. 2)

METHODIK

Beispiel: AD-Strips (IPI)

A-D Strip Readings	Film Acidity (ml 0.1 N NaOH/g)
Level 0	0 to 0.1
Level 1	About 0.2
Level 1.5	About 0.5
Level 2	About 1
Level 3	About 2 or above

Durchführung des AD-Tests an einem Celluloseacetat-Negativ, Fotos: M. Montani

A-D Level in Relation zur freien Säure bei Celluloseacetat-Negativen (Academy of Motion Picture Arts and Sciences, 2016)

METHODIK

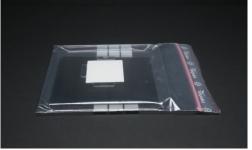
- Nachweis-Verfahren (Saltzman) von NO₂ in der Umwelt
- Farbreaktion von farblos → pink bei Zunahme von NO₂

Beispiele des verwendeten Passivsammlers links: mit Verschlusskappe (vor und nach der Exposition), rechts: ohne Verschlusskappe (während der Exposition)

Saltzman-Verfahren: zunehmende Reaktion zum pinken Azofarbstoff Quelle: https://www.uni-hildesheim.de/fr/fb4/institute/biologie/abteilung-chemie/schwerpunkte/ag-umweltchemie/stickoxid-belastung-urbaner-raeume-und-flaechen/

UNTERSUCHUNGEN

- Konzentrationsmessungen Stickstoffdioxid (NO₂)
 - Messung der Umgebungsluft mit Passivsammlern der Firma FUB Forschungsstelle für Umweltbeobachtung AG
 - Möglichst einfache Anwendung der Sammler

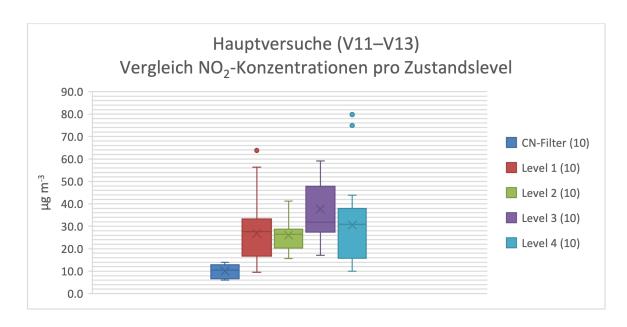


Versuchsaufbau zur Konzentrationsmessung der Umgebungsluft, Fotos: M. Montani

UNTERSUCHUNGEN

- Versuche zur Herstellung eines NO₂-Indikators
 - Praxisorientiert
 - Direkter optischer Nachweis
 - Einfach in der Anwendung und Interpretation

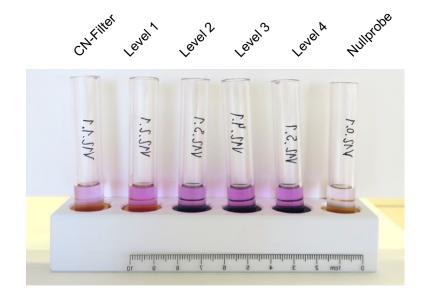
Versuchsaufbau zum direkten optischen Nachweis von Stickstoffdioxid der Umgebungsluft, Fotos: M. Montani


PROBEMATERIAL

Einteilung der Negative nach zunehmender Vergilbung des CN-Negativs (Zustandslevel), Level 1–3 Negative aus dem Museum für Kommunikation Bern, Level 4 Negativ aus dem Ringier Bildarchiv; Fotos: M. Montani

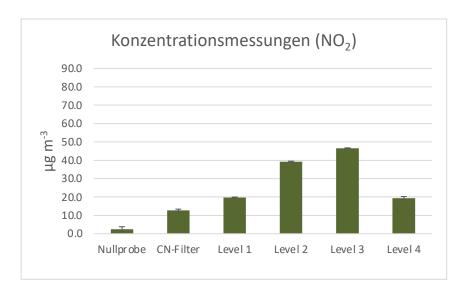
ERGEBNISSE

- Konzentrationen zwischen $6.0 - 80 \mu g/m^3 = ca. 3 - 42 ppb$



Statistische Darstellung der NO₂-Konzentrationen pro Zustandslevel,

Striche unten / oben = Minimum / Maximum, Box Anfang = Erstes Quartil,


Box Ende = Drittes Quartil, Strich in Box = Median, Kreuz in Box = Mittelwert,

Punkte = Ausreisser

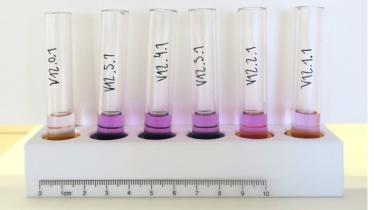
Beispiele des Farbeindrucks der Proben, Bild zur besseren Lesbarkeit gespiegelt von links nach rechts: CN-Filter, Level 1, Level 2, Level 3, Level 4, Nullprobe; Foto: M. Montani

ERGEBNISSE

 ${
m NO_2 ext{-}Konzentrationen}$ des Vorversuches, Expositionszeit 4 Wochen, Fehlerbalken entspricht der Standardabweichung der mehrfach gemessenen Probe

NO₂-Indikator nach einer Expositionszeit von 1 Woche; Foto: M. Montani

ERGEBNISSE


- Konzept zur Konzentrationsmessung von NO₂ an Negativen
- Besseres Verständnis der Negative:
 - Bereits NO₂-Abgabe bei Neumaterial
 - Unterschiedungealtert / gealtert
 - Steigende Tendenz bis Level 3, Abnahme ab Level 4
- Grundlagenforschung zur Entwicklung eines NO₂-Indikators für die Konservierung / Restaurierung
 - Reaktion ohne Einbringen von Feuchtigkeit
 - Einfache Anwendung
 - Passivsammler?

AUSBLICK

- Weitere Forschung dringend benötigt
 - Weitere Konzentrationsmessungen zum fundierteren Verständnis und Interpretation der Degradation der Negative
 - Weiterentwicklung der NO₂-Indikatoren
 - Passivsammler als Indikatoren?
 - Entwicklung einer Richtskala
 - Weiterentwicklung für den Anwendungsbereich

Trockene Anwendung des Saltzman-Verfahrens als Indikator

Wässrige Anwendung des Saltzman-Verfahrens mit Passivsammler

Vielen Dank für Ihre Aufmerksamkeit